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Abstract. We propose a simple model for the calculation of the self-diffusion coefficient of 
classical fluids. The model is based on the idea of separating the configurational space of a 
Ruid system into a vibrational part and a structural part. There is no adjustable parameter 
in the model and the only input required is the interatomic potential. Using the model we 
havecalculated the self-diffusioncoefficients ofthe Lennard-Jones fluid, the one component 
plasma and the Yukawa fluid. The predicted results have been compared with recent 
computer simulation data and a good agreement has been achieved. 

1. Introduction 

It is well known that dynamical and transport properties of a physical system are 
embodied in time correlation functions. The exact calculation of the time correlation 
functions is not feasible because this amounts to solving the complicated many body 
problem. Time correlation functions do not reflect the details of atomic trajectories 
because they are ensemble averages. Therefore, it seems intuitively plausible to treat 
the system using a simplified description of atomic motion. Jumps models (Springer 
1972) for the calculation of the diffusion constant are examples of such simplified 
descriptions (Martin and Yip 1968, Isbiester and McQuarrie 1972). In the present work, 
we propose a simplemodel for the calculation ofself-diffusion coefficientsof theclassical 
system based on the extension of some ideas of Stillinger and Weber (1983). Using this 
model we have calculated the self-diffusion coefficients of Lennard-Jones (U) fluids, 
one component plasma (OCP) and Yukawa fluids. The predicted results have been 
compared with recent computer simulation data and a good agreement has been 
achieved. 

In section 2, we propose the model for the calculation of self-diffusion coefficients. 
Calculation and results are given in section 3. 

2. Model 

For an identical Nparticle system, the self-diffusion coefficient ‘ D  isgiven by the Green- 
Kubo expression (Boon and Yip 1980) 

D = V(t)  dr 
1 

3N V ( r ) = - E ~ U j ( t ) . o j ( o ) ) .  

The exact calculation of the time development of the velocity auto-correlation function 
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(VACF), V(t),  is not yet feasible except for in simple cases of atomic motion. For 
example, in dilute gases V(r) can be calculated using the binary collision approximation 
(McQuarrie 1976) whereas in crystalline solids only the vibrational (harmonic) motion 
is sufficient to calculate V(t). These two ideal cases have little in common. Attempts to 
extend either case to an intermediate state, i.e. dense fluids (liquids and dense gases), 
usually result in a model of liquid diffusion which must be classified as solid like or gas 
Likeratherthananappropriatehybridofthetwo. Recently,Zwanzig(1983)andMahanty 
(1985) have used the idea of separating the configuration space of a many body system 
into a vibrational part and stable packing part. Using similar arguments we propose a 
model for the calculation of V(t)  and hence for the self-diffusion coefficients. Our model 
is based on the following assumptions: 

(i) The configuration space of a many body system is divided into a number of cells. 
Each cell is characterized by a fixed configuration associated with local minima on the 
potential energy hypersurface of the system. 

(ii)Thesystem jumpsbetween thecellswith a certain jumpfrequencyr-I. The effect 
of the cell jump is to rearrange the equilibrium position of particles in a particular 
subvolume V* of the total volume Vof the system. 

(iii) Within the cell the liquid configuration executes harmonic oscillations about 
local minima which are described by a h e d  frequency w .  

(iv) The waiting time distribution for the cell jump affecting the contents of any V* 
is sech(r/T). 

(v) The motion of the system in a particular subvolume is uncorrelated before and 
after the jump. 

Our model differs from the models of Zwanzig (1983) and of Mahanty (1985) with 
respect to the assumptions (iii) and (iv). Our choice of the waiting time distribution is 
such that it provides more jumps at small times than at large times during the diffusion 
process. On the other hand our third assumption will make the calculation of the 
frequency o and time period of the jump T very simple. This enables us to make 
numerical predictions of the self-diffusion coefficients of the fluids as demonstrated 
below. 

Withinour assumptions (i) and (iii), the sum over particles in equation (1) becomes 
the sum over normal modes. The time dependence of the normal mode contribution in 
equation (1) is proportional to cos(wf) until the motion in volume V* is interrupted by 
a cell jump. The factor sech(l/T) takes care of the interruption. This results in an 
expression for the VACF: 

V(f) = ( k ,  T/m)  sech(t/T) cos(wf). (2) 

The power spectrum of the vAcf defined as 

v(ol) = 1- cos(o,t)V(t) dt  
0 

is obtained to be 

(3) 

The self-diffusion coefficient D is obtained to be 
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D = V(0)  = ( k ,  T/m)(x/2)r sech(nwz/2). 
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(5 )  

It is clear from equation (5) that wz > 1 corresponds to solid like behaviour and in this 
limit we obtain 

D --f ( k ,  T/m)n exp[ -(n/2)wr]. (6)  
In order to make explicit predictions for D we estimate w and z from the short time 

property of the normalized VACF given by 

(m/kBT)  V(t) = 1 - V 2  t2/2! + V4 t 4 / 4 !  - V,; t6/6! + . . . (7) 
where - V2,  V 4  and -V6 are the second-, fourth- and sixth-frequency sum rules of the 
spectral function of the VACF. Comparing the short time expansion of equation (2) with 
equation (7) we obtain 

Z-2 = 6,/4 0 2  = (46, - 6,)/4 

where 6 ,  = V2 and b2 = (V4/V, - V,) are called Mori coefficients. From our earlier 
work (Tankeshwar et a1 1987, 1990) we note that, for the LJ fluids, V4 increases with 
increase in temperature and V ,  approaches a constant value at high temperature. 
Consequently, w 2  becomes negative beyond the temperature and density at which 
V4/V: = 5 (or 46, = 6,) and r remains positive. Then the form of V(t) is given as 

V(t) = ( k ,  T/m) cosh(o't)/cosh(t/r) (8) 

where = ( 6 ,  - 46,)/4. 
For the power spectrum this provided 

COS[(Jc/2)SW] COSh[(Z/2)@ I Z] 

cosh(mw) + cos(nswI) 
go,) = (k ,T /m)zr  (9) 

Equation (9) implies that for 46, S 6,, the VACF ceases to oscillate and decays 
monotonically in time. For large times the form of V(t) is 

V(t)  = (k,T/m)exp[-t(l/r - U')] (10) 

as one would expect for high temperature dilute gases. From equation (10) it can easily 
be seen that w'h = 1 or 46,/d2 = 0 corresponds to the case for an ideal gas with an 
infinite diffusion constant. 

3. Calculation and results 

In order to calculate the self-diffusion coefficient from equation ( 5 )  we require 6, and 
6, as inputs. The general expressions for these are given by Tankeshwar et a1 (1987). 
The calculation of 6 ,  involves only the static pair correlation functiong(r), whereas 6, 
involves g(r )  and the static triplet correlation function, g3(r, r') in addition to the 
interatomic potential. Intheabsenceofany knowledgeofthetriplet correlation function, 
we have used a superposition approximation for it. Here it may be noted that this 
approximation has provided a good estimate of the triplet contribution to V4 as demon- 
strated in our earlier works (Tankeshwar eta1 1990, Singla et al1990). We therefore use 
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Figure I.Variationin46,/6,oltheuRuidswith 
densityn' forvariourtemperatures. T'. indicated 
alongeach curve. 

Figure 2. T h e  plot of n' against T" for which 
46, = 62. 

thesame procedurefor thecalculationof V,and V,. In thenext subsectionwepresent the 
results for the self-diffusion coefficients of u fluids, OCP and Yukawa fluids, separately. 

3.1. Lennard-Jonespuids 

For the U fluids the numerical results of 6 ,  and 6 ,  have already been given in our earlier 
works (Tankeshwar et U /  1987, 1990) for wide ranges of densities and temperatures. In 
figure 1 we have plotted 46,/6, as a function density n'(= nu3) for various T*(= k,T/ 
E ) .  uande beingtheparametersoftheupotentiaLFor46, = 6,. V(t)ceasestooscillate, 
and therefore the horizontal line in figure 1 separates the phase of oscillatory behaviour 
of the VACF from that of monotonic decay of the function. From figure 1, we obtain n* 
and T*atwhicb46,/6, = l.Thesen'andT*areplottedinfigure2.The(n*, T*)points 
above the tine in figure 2 correspond to thermodynamic states for which our model 
predicts back scattering or a negative minima in the decay of the VACF. On the other 
hand, (n*, T*) below the line correspond to a dilute system in which the VACF decays 
monotonically. The full circles and crosses in figure 2 represent the molecular dynamics 
(MD) (Kushick and Berne 1973, Levesque and Verlet 1970, Lee and Chung 1986) 
(n*. T* )  states where the VACF does and does not show the back-scattering effect, 
respectively. Therefore, from figure (2) we find that the predictionsof our model for the 
existence of a back-scattering effect in the Lennard-Jones system is in accordance with 
the computer simulation results. 

In order to have an explicit picture ofthe time evolution and power spectrum of the 
V A C F ~ ~  Lennard-Jones fluids we have plotted these in figures 3 and 4, respectively. The 
normalized V(t) calculated from equation (2) for five thermodynamics states are shown 
as full curves whereas the MD results (Kushick and Beme 1973, Lee and Chung 1986) 
are shown as full circles in figure 3. It can be seen from figure 3, that a satisfactory 
agreement is obtained for a good span of time. However, our model does not predict 
the good agreement at long times. The long time behaviour of the calculated V(t)  is 
clearly reflected in the small o1 behaviour of v(ol) in figure 4 where the agreement is 
not satisfactory. However, our results for V(w,)  are comparable to the earlier existing 
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Figure 3. Variation in the normalized VACF q(t) with time f' = t(&/maz)'n obtained for five 
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CircleMD results (Kushick and Beme 1973, Lee and Chung 1986). 

Figure4 h'onnalicd poucr rpecirumof\ ACF for 
liquid argon at itrtnple porn: fullcuwes-resulis 
obtained from equation (4).cmpt) circlcs-smu- 
lation results(Rdhm.m 1961). 

models (Berne et a1 1966, Rahman et a1 1962, Sears 1969). Overall, we find that our 
model is satisfactory for V(t). 

The results for the diffusion coefficients D* = D ( m ~ / u * ) ' / ~  are obtained from 
equation (3) and Den* are plotted in figure 5 as a function of density for six isotherms. 
The MD results of Heyes (1983, 1988) are also shown there. For a dilute gas D*n* is 
almost constant. With increasing density the particles will be arrested in the cagesformed 
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by their neighbouring particles and this results in a decrease in D*n* with increasing 
density as can be seen from figure 3. The temperature dependence of the diffusion 
constant ispresentedinfigure6for five densitiesalongwith thecorresponding computer 
simulationdata(Heyes 1983,1988). Itcanbeseenfromfigures5and6thattheagreement 
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Table 1. Values of the sum rules V,  and V,  and the self-diffusion coefficients D’ of the 
Yukawa fluid (D* = 2nD/V,u2)). 

3.19 280 1.394 3.718 0.588 0.692 
4552 9.384 X 10.’ 0.18415 0.677 0.615 

7.14 3764 9.802 X lo-* 0.21288 0.892 1.039 
2769 6.340 X 10.’ 0.00867 1.770 1.924 

38520 7.015 X IO-’ 0.1168 x 10‘’ 1.4W 1,192 
10.10 29137 8.414 X IO-’ 0.5999 x IO-’ 1.978 2.001 

23120 8.676 x 10-3 0.2102 x 10-3 2.497 2.616 

is satisfactory over the entire fluid range. Our model also provides a good description of 
the density and temperature dependence of the self-diffusion coefficient. 

3.2. Yukawapuids 
The fluid system of the particles interacting via Yukawa or screened Coulomb potentials 
providesa model fordenseionicplasmas in apolarizableelectron background, where the 
screening is treated within the Thomas-Fermi approximation, or for charged stabilized 
colloidal dispersions where the screened Coulomb potential provides the interaction 
between the electron double layers surrounding the colloidal particles. The interaction 
potential for the Yukawa fluids is given as 

+(r)  = ( e / r )  exp(-Kr). (11) 
where E has the dimensions of charge squared and K is the reciprocal of the screening 
length. We write equation (11) in a more convenient form as 

P+W = (w) ~XP(-EX) (12) 
wherep = (k ,T) - ’ ,x  = r/aandE = Ka;a = (l:n)”3istheionsphereradiusandnisthe 
number density. The numerical results of VL and V4 for the Yukawa fluid have been 
calculated using the molecular dynamics data for g(r) of Robbins et af (1987). The 
numerical resultsfor these are given in table 1. 

The time evolution of the normalized VACF v(t) of the Yukawa fluid is calculated 
from equation (2) using the values of V, and V4from table 1 for different valuesof e and 
r. The results obtained are presented as full curves in figure 7 for two typical values of 
5 and r. The recent computer simulation results of Robbins et a1 (1987) are shown as 
full circles. From figure 7 it can easily be seen that the initial decay of the VACF is very 
well demonstrated b our model up until a time $zE where rE is related to the Einstein 

minimum whose position is in agreement with simulation data, although the amplitude 
oftheoscillationisoverestimated. Itcanalsobeseen that ourtheoryshowsenhancement 
of oscillations in V(t) as the screening parameter E decreases in agreement with simu- 
lation results. For times greater than zE, the oscillations are found to be damped. The 
oscillations die out for t = 2tE. On comparing the time period of oscillation with V(t) ,  
we have found that our theory overestimates it. 

The results obtained for the coefficient of self-diffusion D* (= D ( k / w E a Z ) )  from 
equation (6) along with the MD results of Robbins et a/ (1987) are given in table 1. It can 

frequency oE (= / V,) as zE = k / w E .  For times greater than ItE, our results predict a 
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be seen from table 1 that our model provides a good estimate for the self-diffusion 
coefficient of Yukawa fluids for various j and r. 

From the results plotted in figure 7 for V(t)  it can be seen that the time evolution of 
the VAC function is not very satisfactory. However. the area under the curve, i.e. the 
self-diffusion is quite satisfactory for most of the thermodynamic states. 

3.3. One-component plasma 
In the study of charged fluid dynamics, the oce of point charges interacting through 
repulsive Coulomb potential, immersed in a uniform background of positive charges, 
has been the simplest system. This system is characterized by a single parameter 
r = eZ/r,k,T; e and ro are electron charge and ion-sphere radius. The expressions for 6, 
and d2 (or Vz  and V,)  are already known (Singh er al1979). The numerical results for 6, 
and d2 obtained using computer simulation data of g(r) (Brush et ~l 1966, Hansen ef ol 
1975) are plotted in figure 8 as a function of r. From figure 8 it can easily be seen that 6 ,  
is constant for all r, whereas 62 decreases with increasing r. From this and equation (6), 
it can easily be seen that the r dependence of self-diffusion is solely determined by 6,. 
We also find that 6, decreases rapidly with increasing r in the low r regime, whereas for 
larger 6,decreases slowly. The self-diffusion coeffcient D" = D/w,r$ where wp is the 
plasma frequency, calculated from equation (6) for the OCP system and plotted in figure 
9 as a function of r. The MD results of Hansen el a1 (1975) are represented by full circles. 
It can be seen from figure 9 that our model explains well the r dependence of the 
self-diffusion coefficient. However, the results for the time evolution of V(t)  are not 
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satisfactory for the ocpsystem. The agreement is only qualitatively similar to the earlier 
plotted results for the Yukawa fluid. 

4. Conclusion 

It is found that our model consistently predicts the value of the self-diffusion coefficients 
in agreement with simulation resultsfor ufluids, Yukawafluidsandoc~. We also found 
that the prediction of our model for the existence of back-scattering effects for the 
Lennard-Jones fluids is in accordance with the available simulation data. Our model 
also simulatessatisfactorytime behaviour of the VACFof Lennard-Jonesfluids. However, 
results for the VACF of the Yukawa and OCP are not satisfactory. It may be that the 
waiting-time distribution is more complicated for Yukawa fluids and OCP, and different 
from that for the U fluids. Here it may be noted that our model gives D = 0 for the solid 
phase. For this case, If4 = fi and hence the jump frequency is zero and the particle will 
be localized in local potential wells, implying no diffusion. 

We have also investigated the use of the Gaussian and exponential models for the 
waiting-time distribution. It is found that results are very sensitive to the choice of this 
distribution. This is also noted by Mahanty (1985). In our theory the best results are 
obtained using sech(t/r) as the waiting-time distribution. 
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